

/ 10 PTS



Fill in the blanks.

Let Q be the point (-1,4,-4), R be the point (3,-1,3),

and P be the point such that  $\overrightarrow{PQ}$  is the vector  $3\overrightarrow{j} - 3\overrightarrow{k}$ .

ALL ITAMS & POINTS SCORE: \_\_\_/100 PTS

UNLESS OTHERWISE NOTED

[a] If  $\vec{v}$  is a vector of magnitude 8, and the angle between  $\overrightarrow{PQ}$  and  $\vec{v}$  is  $\frac{5\pi}{6}$  radians, find  $\overrightarrow{PQ} \cdot \vec{v}$ .

$$\begin{aligned} \|\vec{p}_{Q}\|\|\vec{r}\|\cos\Theta &= (3\sqrt{2})(8)\cos\frac{\pi}{2} \\ &= (3\sqrt{2})(8)(-\frac{\pi}{2}) \end{aligned}$$

$$= (3\sqrt{2})(8)(-\frac{\pi}{2})$$

$$= -12\sqrt{6}$$

[b] In which octant is P?

In which octant is 
$$P$$
?

 $(-1-x,4-y,-4-z) = (0,3,-3)$ 
 $-1-x=0$ 
 $x=-1$ 
 $4-y=3$ 
 $y=1$ 
 $-4-z=-3$ 
 $y=1$ 
 $y=1$ 

[c] Find a vector of magnitude 8 in the opposite direction as  $\overrightarrow{PR}$ .

$$\begin{array}{l}
\overline{PR} = \langle 3 - 1, -1 - 1, 3 - 1 \rangle = \langle 4, -2, 4 \rangle \\
\underline{-8} \\
||\langle 4, -2, 4 \rangle|| = \frac{8}{\sqrt{4^2 + (2)^2 + 4^2}} \langle 4, -2, 4 \rangle \\
= \frac{8}{\sqrt{36}} \langle 4, -2, 4 \rangle \\
= -4 - \frac{8}{3} \langle 4, -2, 4 \rangle \\
= \langle -\frac{16}{3}, \frac{8}{3}, \frac{16}{3} \rangle
\end{array}$$

[d] If  $2\vec{i} - \vec{j} - c\vec{k}$  is perpendicular to  $\overrightarrow{PR}$ , find the value of c.

$$(2,-1,-c) \cdot (4,-2,4) = 0$$

$$8+2-4c=0$$

$$c=\frac{5}{3}$$

[e] Find the volume of the parallelepiped with 
$$\overrightarrow{PQ}$$
,  $\overrightarrow{PR}$  and  $<2,1,-1>$  as adjacent edges.

$$\begin{vmatrix} 0 & 3 & -3 & 0 & 3 \\ 4 & -2 & 4 & 4 & -2 & = & 0 + 24 - 12 - (12 + 0 - 12) = 12 \\ 2 & 1 & -1 & 2 & 1 & 5 \end{vmatrix}$$

[f]If you start at point P, move 2 units to the left, 4 units down, and 6 units forward, find the co-ordinates of your ending point.

$$(-1+6, 1-2, -1-4) = (5, -1, -5)$$

[g] Find 
$$\angle QPR$$
.

Q

 $cos^{-1} \overrightarrow{PQ} \cdot \overrightarrow{PR} = cos^{-1} \langle 0, 3, -3 \rangle \cdot \langle 4, -2 \rangle$ 

[g] Find 
$$\angle QPR$$
.

 $Q = \cos^{-1} \frac{PQ \cdot PR}{|PQ|||PR||} = \cos^{-1} \frac{(0, 3, -3) \cdot (4, -2, 4)}{(3\sqrt{2})(6)}$ 
 $= \cos^{-1} \frac{(0, -6, -12)}{(8\sqrt{2})}$ 
 $= \cos^{-1} \frac{(-18)}{(8\sqrt{2})}$ 

and let 
$$\mathscr{D}_2$$
 be the plane  $3x - y - 5z = 6$ .  $= \langle 3, -1, -5 \rangle$   
Let  $\ell_1$  be the line which passes through  $(0, 6, -4)$  and is parallel to both  $\mathscr{D}_1$  and  $\mathscr{D}_2$ .  
Let  $\ell_2$  be the line which passes through  $(-4, -8, 6)$  and is parallel to  $\ell_1$ .

Let 
$$\ell_2$$
 be the line which passes through  $(-4, -8, 6)$  and is parallel to  $\ell_1$ .  
Let  $\mathfrak{D}_3$  be the plane which passes through  $(2, -7, 9)$  and is perpendicular to the parallel lines  $\ell_1$  and  $\ell_2$ .

$$y = 6 - t$$
 $y = 6 - t$ 
 $y = 6 - t$ 

$$\frac{2}{2} = \frac{20-3}{3-1-5} = \frac{20}{3-1-5} = \frac{2}{3-1-5} =$$



[c]

Find symmetric equations for line 
$$\ell_2$$
.  $d_2 \parallel d_1 \rightarrow 0$  set  $2$ .  $d_2 \parallel d_1 \rightarrow 0$  set  $2$ .  $d_2 \parallel d_1 \rightarrow 0$  set  $2$ .  $d_3 \parallel d_1 \rightarrow 0$  set  $2$ .  $d_4 \parallel d_1 \rightarrow 0$  set  $2$ .

[b] Find symmetric equations for line 
$$\ell_2$$
.  $d_2 \parallel d_1 \rightarrow use d_2 = d_3$ .

Let  $\wp_1$  be the plane 2x-3z=8,  $\overrightarrow{\wp}_1=\langle 2,0,-3\rangle$ 

SCORE: /30 PTS

Find the standard (point-normal) equation for plane 
$$\otimes_3$$
.  $\overrightarrow{\cap}_3$   $//$   $\overrightarrow{J}_1$ ,  $\overrightarrow{J}_2$   $\longrightarrow$   $USE$   $\overrightarrow{N}_3 = \overrightarrow{J}_1 = \overrightarrow{J}_2$ 

| SCORE: | _/ | 10 | PTS |
|--------|----|----|-----|
|        |    |    |     |
|        |    |    |     |

In the diagram below, ABD and ACE are both line segments.

AE is six times the length of AC, and BD is three times the length of AB. If  $\vec{s} = \overrightarrow{AD}$  and  $\vec{t} = \overrightarrow{AC}$ , find an expression for  $\overrightarrow{EB}$  in terms of  $\vec{s}$  and  $\vec{t}$ .

